Abstract
Addition polyimides, [e.g. endo-5-norbornene-2.3-dicarboximide(nadimides), maleimides etc.] and epoxy resins have been used extensively in the past as matrix resins for advanced fiber-reinforced composites. However, inadequate flame resistance and thermal stability of these resins is one of their serious limitations. Our earlier studies have shown excellent flame resistance properties of addition polyimides based on bis(3-aminophenyl) methyl phosphine oxide (B) or tris(3-aminophenyl) phosphine oxide (T). Carbon fiber reinforced composites based on such matrix resin did not burn even in pure oxygen. In order to investigate the effect of weight percent of phosphorus on thermal behaviour and flame resistance, a series of addition polyimides and epoxy resins were prepared using B, T and amide-amines. The effect of structure on curing behaviour of resins and thermal and flame resistance of cured resins was evaluated. The results demonstrate an improvement in char yield of resins containing higher weight percent of phosphorus.

This publication has 20 references indexed in Scilit: