The Eliassen-Palm flux is important in analytical studies of small-amplitude waves where it provides a powerful and elegant tool for the description of wave propagation in mean zonal shear flows, as well as for analysis of the effective mean zonal force induced by the waves. Furthermore, it has recently been used as a diagnostic in a number of studies of atmospheric data and numerical models of specific dynamical phenomena. In this paper, we apply it to the GFDL "SKYHI" global general circulation model of the troposphere-stratosphere-mesosphere, and describe computations of the primitive equations, isobaric coordinate form of the Eliassen-Palm flux and its divergence under conditions of annual-mean insolation. The Eliassen-Palm flux diagnostics show a clear picture of planetary wave propagation from the midlatitude troposphere into the stratosphere and mesosphere. In the tropics, the presence of Kelvin waves confuses the picture somewhat (because their phase speeds are eastward with respect to th... Abstract The Eliassen-Palm flux is important in analytical studies of small-amplitude waves where it provides a powerful and elegant tool for the description of wave propagation in mean zonal shear flows, as well as for analysis of the effective mean zonal force induced by the waves. Furthermore, it has recently been used as a diagnostic in a number of studies of atmospheric data and numerical models of specific dynamical phenomena. In this paper, we apply it to the GFDL "SKYHI" global general circulation model of the troposphere-stratosphere-mesosphere, and describe computations of the primitive equations, isobaric coordinate form of the Eliassen-Palm flux and its divergence under conditions of annual-mean insolation. The Eliassen-Palm flux diagnostics show a clear picture of planetary wave propagation from the midlatitude troposphere into the stratosphere and mesosphere. In the tropics, the presence of Kelvin waves confuses the picture somewhat (because their phase speeds are eastward with respect to th...