Na + Channel Mutation That Causes Both Brugada and Long-QT Syndrome Phenotypes

Abstract
Background— Complex physiological interactions determine the functional consequences of gene abnormalities and make mechanistic interpretation of phenotypes extremely difficult. A recent example is a single mutation in the C terminus of the cardiac Na+ channel, 1795insD. The mutation causes two distinct clinical syndromes, long QT (LQT) and Brugada, leading to life-threatening cardiac arrhythmias. Coexistence of these syndromes is seemingly paradoxical; LQT is associated with enhanced Na+ channel function, and Brugada with reduced function. Methods and Results— Using a computational approach, we demonstrate that the 1795insD mutation exerts variable effects depending on the myocardial substrate. We develop Markov models of the wild-type and 1795insD cardiac Na+ channels. By incorporating the models into a virtual transgenic cell, we elucidate the mechanism by which 1795insD differentially disrupts cellular electrical behavior in epicardial and midmyocardial cell types. We provide a cellular mechanistic ba...