Cosmological Magnetic Fields from Gauge-Mediated Supersymmetry-Breaking Models
Preprint
- 23 November 1999
Abstract
We study the generation of primordial magnetic fields, coherent over cosmologically interesting scales, by gravitational creation of charged scalar particles during the reheating period. We show that magnetic fields consistent with those detected by observation may obtained if the particle mean life \tau_s is in the range 10^{-14} sec \leq \tau_s \leq 10{-7} sec. We apply this mechanism to minimal gauge mediated supersymmetry-breaking models, in the case in which the lightest stau \tilde\tau_1 is the next-to-lightest supersymmetric particle. We show that, for a large range of phenomenologically acceptable values of the supersymmetry-breaking scale \sqrt{F}, the generated primordial magnetic field can be strong enough to seed the galactic dynamo.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: