Modulation of ecto-nucleoside triphosphate pyrophosphatase activity of human osteoblast-like bone cells by 1α,25-dihydroxyvitamin D3, 24R, 25-dihydroxyvitamin D3, parathyroid hormone, and dexamethasone
Open Access
- 1 August 1994
- journal article
- research article
- Published by Oxford University Press (OUP) in Journal of Bone and Mineral Research
- Vol. 9 (8) , 1259-1266
- https://doi.org/10.1002/jbmr.5650090816
Abstract
Extracellular inorganic pyrophosphate (PPi) is involved in the regulation of mineralization, and there is evidence that the cell surface enzyme, NTP pyrophosphatase, is a major source of this metabolite in bone. Osteotrophic agents that influence bone turnover may exert their effects, in part, by modulating the activity of ecto-NTP pyrophosphatase in bone cells. We investigated the effect of 1,25(OH)2D3,24,25(OH)2D3, dexamethasone, and parathyroid hormone (PTH) on the activity of this enzyme in cultured human trabecular bone-derived osteoblast-like cells. 1,25(OH)2D3 at 10−11-10−9 M induced a dose- and time-dependent increase in activity (at 96 h; maximum 10−9 M, p > 0.001), whereas higher concentrations (10−8 and 10−7 M) had no effect. In contrast, 24,25(OH)2D3 was effective only at 10−8 and 10−6 M (at 96 h; p > 0.01). Dexamethasone (10−9-10−7 M) caused a dose-dependent decrease in ecto-NTP pyrophosphatase activity (10−7 M, p > 0.001); concentrations higher than 10−7 M did not evoke greater inhibition. This effect became apparent by 48 h and was significantly enhanced after 72 h. The response to dexamethasone was attenuated by cycloheximide, indicating a requirement for de novo protein synthesis. Interestingly, the stimulatory effect of 10−9 M 1,25(OH)2D3 on ecto-NTP pyrophosphatase activity was significantly enhanced in the presence of dexamethasone (10−9-10−7 M). Human PTH(1-34) and bovine PTH(1-34) in the range 10−10-10−7 M had no effect on enzyme activity over a 72 h period. The effects of vitamin D3 on the expression of bone ecto-NTP pyrophosphatase may be tissue or cell type specific because the ecto-NTP pyrophosphatase activity of subject-matched skin-derived fibroblasts showed no sensitivity to 1,25(OH)2D3. These data suggest a possible role for both vitamin D3 metabolites and glucocorticoids in the regulation of the mineralization process in vivo via modulation of PPi production.Keywords
Funding Information
- Action Research and the Arthritis and Rheumatism Council
This publication has 46 references indexed in Scilit:
- Glucocorticoids decrease vitamin D receptor number and gene expression in human osteosarcoma cellsJournal of Bone and Mineral Research, 1992
- Modulation of nucleotide pyrophosphatase in plasmacytoma cellsBiochemical and Biophysical Research Communications, 1991
- Hypophosphatasia and the Extracellular Metabolism of Inorganic Pyrophosphate: Clinical and Laboratory Aspects: Part ICritical Reviews in Clinical Laboratory Sciences, 1991
- Regulation of alkaline phosphatase by 1,25-dihydroxyvitamin D3 and ascorbic acid in bone-derived cellsJournal of Bone and Mineral Research, 1990
- Nucleoside triphosphate pyrophosphatase of rabbit matrix vesicles, a mechanism for the generation of inorganic pyrophosphate in epiphyseal cartilageBiochimica et Biophysica Acta (BBA) - General Subjects, 1987
- Vitamin D metabolites regulate osteocalcin synthesis and proliferation of human bone cells in vitroJournal of Endocrinology, 1985
- Production of osteocalcin by human bone cells in vitro. Effects of 1,25(OH)2D3, 24,25(OH)2D3, parathyroid hormone, and glucocorticoidsMetabolic Bone Disease and Related Research, 1984
- Current Clinical Applications of Vitamin D Metabolite ResearchClinical Orthopaedics and Related Research, 1981
- Pyrophosphate stimulation of calcium uptake into cultured embryonic bones. Fine structure of matrix vesicles and their role in calcificationDevelopmental Biology, 1973
- Relationship between pyrophosphate, amorphous calcium phosphate and other factors in the sequence of calcificationin vivoCalcified Tissue International, 1972