Final report on the design of the MHD generator channel for the high performance demonstration experiment
- 1 August 1977
- report
- Published by Office of Scientific and Technical Information (OSTI)
Abstract
The MHD generator for the MHD Performance Demonstration Experiment is designed to demonstrate that enthalpy extraction of the order of 16 to 18% at a turbine efficiency greater than 60% is achievable for commercial application. The generator channel is designed to operate with a subsonic flow of seeded combustion products in a 6 Tesla (T) magnetic field and deliver up to 50 MW of electrical power with a 60 kg/sec mass flow. The heat sink design of the channel limits the operating duration to 15 sec which is adequate to demonstrate performance. Physically, the generator channel is 9 m long, 0.82 m wide by 0.60 m high at the inlet and 1.32 m wide by 1.08 m high at the exit. The channel is fabricated in five sections for ease in handling. The channel consists of an outer pressure vessel lined with a copper heat sink in the form of interior electrode and insulating walls. The outer pressure vessel is comprised of NEMA G-11 laminated fiberglass panels circumferentially reinforced with external stainless steel frames. The interior insulating wall is comprised of 1.9 cm square copper pegs end mounted to the wall with a 1.6 mm refractory filled insulating gap betweenmore » adjacent pegs. The copper electrodes span the channel height on either side and are similarly insulated from each other. Graphite caps on the electrodes are utilized to produce a high surface temperature and resulting favorable electrical contact with the plasma. There are 485 pairs of electrically accessible electrodes of which only 418 pairs spanning 7 m length in the middle of the channel will be connected to individual loads in the Faraday configuration. The channel is designed to also be operated in an externally connected diagonal configuration in which a single load is connected between inlet and exit electrodes and selected anode and cathode electrodes are shorted elsewhere. « lessKeywords
This publication has 0 references indexed in Scilit: