Abstract
The production of jet pairs with small transverse momentum and large relative rapidity in high energy hadron-hadron collisions is studied. The rise of the parton-level cross section with increasing rapidity gap is a fundamental prediction of the BFKL `perturbative pomeron' equation of Quantum Chromodynamics. However, at fixed collider energy it is difficult to disentangle this effect from variations in the cross section due to the parton distributions. It is proposed to study instead the distribution in the azimuthal angle difference of the jets as a function of the rapidity gap. The flattening of this distribution with increasing dijet rapidity gap is shown to be a characteristic feature of the BFKL behaviour. Predictions for the Fermilab proton-antiproton collider are presented.

This publication has 0 references indexed in Scilit: