Influence of the local absorber layer thickness on the performance of ZnO nanorod solar cells

Abstract
The local absorber layer thickness (dlocal) of solar cells with extremely thin absorber was changed between 10 nm and 70 nm. As a model system, ZnO nanorod arrays (electron conductor) with fixed internal surface area coated with In2S3 (absorber) and impregnated with CuSCN (transparent hole conductor) were applied. The performance of the small area solar cells depended critically on dlocal. The highest short circuit current density was reached for the lowest dlocal. In contrast, the highest open circuit voltage was obtained for the highest dlocal. A maximum energy conversion efficiency of 3.4% at AM1.5 was achieved. Limiting factors are discussed.
Funding Information
  • EFRE (WK-2012/10133711)