Abstract
The only existing theory of atmospheric turbulence which is capable of giving a quantitative approach to the complex problems of diffusion in the lower atmosphere is the classical theory in which it is generally assumed that the effect of eddies in the atmosphere is completely analogous to that of molecules in a gas apart from a difference of scale. This assumption, which later evidence has shown to be incorrect, is not essential to the theory, and in the present paper is replaced by the assumption that the mixing length of an eddy increases with both height above and nature of the earth’s surface . With this assumption a self-consistent treatment of diffusion is developed which is able to account quantitatively for such meteorological phenomena as the distribution of water vapour over land and sea (including evaporation from the oceans) and the diffusion of smoke near the ground. The treatment is mainly confined to diffusion in an adiabatic atmosphere.
Keywords