Anaplerosis of the citric acid cycle: role in energy metabolism of heart and skeletal muscle
- 5 April 2000
- journal article
- review article
- Published by Wiley in Acta Physiologica Scandinavica
- Vol. 168 (4) , 657-665
- https://doi.org/10.1046/j.1365-201x.2000.00717.x
Abstract
Efficient energy transfer in heart and skeletal muscle requires a series of moiety‐conserved cycles. The intermediaries of the metabolic cycles are finely regulated to maintain a dynamic state of equilibrium. In heart muscle, depletion of the citric acid cycle (TCA cycle) through a block of 2‐oxoglutarate dehydrogenase results in a rapid decline of contractile function, which is reversed by the addition of substrates promoting flux through the carboxylating enzymes, malic enzyme, pyruvate carboxylase and propionyl‐CoA carboxylase. Anaplerosis describes a pathway, which replenishes a metabolic cycle. We show that enzymes for anaplerosis of the TCA cycle are expressed in heart and skeletal muscles. The role of anaplerosis of the TCA cycle in skeletal muscle is not entirely clear, but there is substantial evidence for its operational control during exercise. While the anaplerotic flux of carbon into the TCA cycle exceeds the removal of cycle intermediates, this process is only transient and reverses with prolonged exercise. It remains to be determined, however, whether the initial increase in TCA cycle intermediates is obligatory in order to attain high rates of TCA cycle flux, or primarily reflects a mass action phenomenon owing to increased substrate availability for anaplerotic pathways.Keywords
This publication has 43 references indexed in Scilit:
- Interaction between Citrate Synthase and Malate DehydrogenaseJournal of Biological Chemistry, 1998
- 11 Muscle Amino Acid Metabolism at Rest and During ExerciseExercise and Sport Sciences Reviews, 1998
- Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate.Journal of Clinical Investigation, 1991
- Enzyme‐enzyme interactions and their metabolic roleFEBS Letters, 1990
- COMPLEXES OF SEQUENTIAL METABOLIC ENZYMESAnnual Review of Biochemistry, 1987
- Muscle ammonia and amino acid metabolism during dynamic exercise in manClinical Physiology and Functional Imaging, 1986
- Energy metabolism in reperfused heart muscle: Metabolic correlates to return of functionJournal of the American College of Cardiology, 1985
- On the inability of ketone bodies to serve as the only energy providing substrate for rat heart at physiological work loadBasic Research in Cardiology, 1983
- The evolution of metabolic cyclesNature, 1981
- The Purine‐Nucleotide CycleEuropean Journal of Biochemistry, 1980