Retinal image motion alone does not control disconjugate postsaccadic eye drift

Abstract
1. In these experiments, postsaccadic ocular drift was induced by postsaccadic motion of the visual scene. In the most important case, the scene was moved in one eye but not the other. Six human subjects viewed the interior of a full-field hemisphere filled with a random-dot pattern. During training, eye movements were recorded by the electrooculogram. A computer detected the end of every saccade and immediately moved the pattern horizontally in the same or, in different experiments, in the opposite direction as the saccade. The pattern motion was exponential with an amplitude of 25% of the size of the antecedent saccade and a time constant of 50 ms. Before and after 3-4 h of such training, movements of both eyes were measured simultaneously by the eye coil-magnetic field method while subjects looked between stationary targets for calibration, explored the visual pattern with saccades, or made saccades in the dark to measure the effects of adaptation on postsaccadic ocular drift. The amplitude of this drift was expressed as a percentage of the size of the antecedent saccade. 2. In monocular experiments, subjects viewed the random-dot pattern with one eye. The other eye was patched. With two subjects, the pattern drifted backward in the direction opposite to the saccade; with the third, it drifted onward. The induced ocular drift was exponential, always in the direction to reduce retinal image motion, had zero latency, and persisted in the dark. After training, drift in the dark changed by 6.7% in agreement with our prior study with binocular vision, which produced a change of 6.0%. 3. In a dichoptic arrangement, one eye regarded the moveable random-dot pattern; the other, through mirrors, saw a different random-dot pattern (with similar spacing, contrast, and distance) that was stationary. These visual patterns were not fuseable and did not evoke subjective diplopia. In this case, the induced change in postsaccadic drift in the same three subjects was only 4.8%. In all cases the changes in postsaccadic drift were conjugate--they obeyed Hering's law. 4. Normal human saccades are characterized by essentially no postsaccadic drift in the abducting eye and a pronounced onward drift (approximately 4%) in the adducting eye. After training, this abduction-adduction asymmetry was preserved in the light and dark with monocular or dichoptic viewing, indicating again that all adaptive changes were conjugate. 5. When the subjects viewed the adapting stimulus after training, the zero-latency, postsaccadic drift always increased from levels in the dark.(ABSTRACT TRUNCATED AT 400 WORDS)

This publication has 0 references indexed in Scilit: