THE EDGE STATES OF THE BF SYSTEM AND THE LONDON EQUATIONS
- 10 February 1993
- journal article
- Published by World Scientific Pub Co Pte Ltd in International Journal of Modern Physics A
- Vol. 8 (4) , 723-752
- https://doi.org/10.1142/s0217751x9300028x
Abstract
It is known that the 3D Chern–Simons interaction describes the scaling limit of a quantum Hall system and predicts edge currents in a sample with boundary, the currents generating a chiral U(1) Kac-Moody algebra. It is no doubt also recognized that, in a somewhat similar way, the 4D BF interaction (with B a two-form, dB the dual *j of the electromagnetic current, and F the electromagnetic field form) describes the scaling limit of a superconductor. We show in this paper that there are edge excitations in this model as well for manifolds with boundaries. They are the modes of a scalar field with invariance under the group of diffeomorphisms (diffeos) of the bounding spatial two-manifold. Not all diffeos of this group seem implementable by operators in quantum theory, the implementable group being a subgroup of volume-preserving diffeos. The BF system in this manner can lead to the w1+∞ algebra and its variants. Lagrangians for fields on the bounding manifold which account for the edge observables on quantization are also presented. They are the analogs of the (1+1)-dimensional massless scalar field Lagrangian describing the edge modes of an Abelian Chern-Simons theory with a disk as the spatial manifold. We argue that the addition of “Maxwell” terms constructed from F∧*F and dB∧*dB does not affect the edge states, and that the augmented Lagrangian has an infinite number of conserved charges—the aforementioned scalar field modes—localized at the edges. This Lagrangian is known to describe London equations and a massive vector field. A (3+1)-dimensional generalization of the Hall effect involving vortices coupled to B is also proposed.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: