Efficient differentiation of proadipocyte stem cells on nonadherent surfaces: Evidence for differentiation without DNA synthesis

Abstract
The differentiation of low density BALB/3T3 T proadipocytes that are cultured in standard tissue culture flasks can be induced by heparinized medium containing human plasma. It has been shown that under these conditions, cells first growth‐arrest at a distinct state in the G1 phase of the cell cycle, designated GD, and thereafter differentiate within 8 to 12 days. In this paper, we report that the kinetics of proadipocyte differentiation can be significantly accelerated by culture of cells in differentiation‐promoting medium on non‐adherent surfaces, such as agarose‐coated plates or bacteriological Petri dishes. Data also show that in a nonadherent microenvironment extensive differentiation can occur in the absence of DNA synthesis. This was established most convincingly by the demonstration that placement of mitotic cells in heparinized medium containing human plasma and hydroxyurea on agarose‐coated Petri dishes induced 70–80% of the cells to GD arrest and differentiate without traversing the S phase of the cell cycle. It is concluded that under appropriate microenvironmental conditions metabolic events that occur solely in the late M or early G1 phase of the cell cycle can mediate the integrated control of proadipocyte proliferation and differentiation.