Temporal studies on the tissue compartmentalization of bone sialoprotein (BSP), osteopontin (OPN), and SPARC protein during bone formation In Vitro
- 1 September 1992
- journal article
- Published by Wiley in Journal of Cellular Physiology
- Vol. 152 (3) , 467-477
- https://doi.org/10.1002/jcp.1041520305
Abstract
To study the role of noncollagenous proteins in bone formation, the synthesis and tissue distribution of BSP (bone sialoprotein), OPN (osteopontin) and SPARC (secreted protein acidic and rich in cysteine) were analyzed using pulse‐chase and continuous labeling protocols during bone formation by cultures of rat calvarial cells. Following a 1 h labeling period with [35S]methionine or [35SO4], radiolabeled BSP was rapidly lost from the cells and appeared transiently in the culture medium and in a 4 M GuHCI extract (G1) of the mineralized tissue. Coinciding with the loss of BSP from these compartments, radiolabeled BSP increased in demineralizing, 0.5 M EDTA extracts (E) of the bone, in a subsequent GuHCI extract (G2), and in a bacterial collagenase digest (CD fraction) of the extracted tissue, over a 24 h chase period. In comparison, the 55 kDa form of OPN, with a small amount of the 44 kDa OPN, was secreted almost entirely into the culture medium. Most of the 44 kDa OPN, together with some 55 kDa OPN, accumulated rapidly in the E extract but could not be detected in either G extract or in the CD fraction. SPARC appeared transiently in the G1 extract, but was otherwise quantitatively secreted into the culture medium from where it was lost by complexing and/or degradation. When cultures were continuously labeled over a 12 day period with [35S]methionine, radiolabeled BSP and 44 kDa OPN accumulated in the E extract together with a small amount of SPARC. Some radiolabeled BSP also accumulated in the G2 extract. From the relative incorporation of [35SO4] over the same time period, a time‐dependent loss in sulphate from the BSP was evident. Using a 24 h pulse‐labeling protocol, the amount of radiolabeled BSP and OPN in the E extract and the BSP in the G2 extract were not altered significantly over a 12‐day chase period. These studies demonstrate that the 44 kDa OPN and most of the BSP are rapidly bound to the hydroxyapatite crystals where they may regulate crystal formation and growth during bone formation. Some BSP is deposited in the osteoid and appears to become masked by the formation of hydroxyapatite, indicating a potential role for this protein in epitactic nucleation of hydroxyapatite crystal formation.Keywords
This publication has 35 references indexed in Scilit:
- Expression of bone matrix proteins associated with mineralized tissue formation by adult rat bone marrow cells in vitro: Inductive effects of dexamethasone on the osteoblastic phenotypeJournal of Cellular Physiology, 1991
- Developmental appearance and ultrastructural immunolocalization of a major 66 kDa phosphoprotein in embryonic and post‐natal chicken boneThe Anatomical Record, 1990
- Sulphation of secreted phosphoprotein I (SPPI, osteopontin) is associated with mineralized tissue formationBiochemical and Biophysical Research Communications, 1989
- Multiple forms of SppI (secreted phosphoprotein, osteopontin) synthesized by normal and transformed rat bone cell populations: Regulation by TGF-βBiochemical and Biophysical Research Communications, 1989
- Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontinBiochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1989
- Ultrastructural analysis of bone nodules formed in vitro by isolated fetal rat calvaria cellsBone, 1988
- Tissue specificity and developmental expression of rat osteopontinBiochemical and Biophysical Research Communications, 1987
- Immunohistochemical demonstration of a 44-KD phosphoprotein in developing rat bones.Journal of Histochemistry & Cytochemistry, 1987
- Osteonectin is a minor component of mineralized connective tissues in ratBiochemistry and Cell Biology, 1986
- Radioautographic visualization and biochemical identification of O-phosphoserine- and O-phosphothreonine-containing phosphoproteins in mineralizing embryonic chick bone.The Journal of cell biology, 1984