Diffuse interface model for structural transitions of grain boundaries
Top Cited Papers
- 4 January 2006
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 73 (2) , 024102
- https://doi.org/10.1103/physrevb.73.024102
Abstract
The conditions for structural transitions at the core of a grain boundary separating two crystals was investigated with a diffuse interface model that incorporates disorder and crystal orientation [Kobayashi et al., Physica D 140, 141 (2000)]. The model predicts that limited structural disorder near the grain boundary core can be favorable below the melting point. This disordered material is a precursor to a liquid phase and therefore the model represents grain boundary premelting. This model is shown to be isomorphic to Cahn’s critical point wetting theory [J.W. Cahn, J. Chem. Phys. 66, 3667 (1977)] and predicts first- and higher-order structural grain boundary transitions. A graphical construction predicts the equilibrium grain boundary core disorder, the grain boundary energy density, and the relative stability of multiple grain boundary “complexions.” The graphical construction permits qualitative inference of the effect of model properties, such as empirical homogeneous free energy density and assumed gradient energy coefficients, on properties. A quantitative criterion is derived which determines whether a first-order grain boundary transition will occur. In those systems where first-order transition does occur, they are limited to intermediate grain-boundary misorientations and to a limited range of temperatures below the melting point. Larger misorientations lead to continuously increasing disorder up to the melting point at which the disorder matches a liquid state. Smaller misorientation continuously disorder but are not completely disordered at the melting point. Characteristic grain boundary widths and energies are calculated as is the width’s divergence behavior at the melting point. Grain boundary phase diagrams are produced. The relations between the model’s predictions and atomistic simulations and with experimental observations are examined.Keywords
This publication has 75 references indexed in Scilit:
- Relating atomistic grain boundary simulation results to the phase-field modelComputational Materials Science, 2002
- Self-diffusion in high-angle fcc metal grain boundaries by molecular dynamics simulationPhilosophical Magazine A, 1999
- Thermodynamic Stability of Intergranular Amorphous Films in Bismuth‐Doped Zinc OxideJournal of the American Ceramic Society, 1998
- Continuous thermodynamic-equilibriumglass transition in high-energy grain boundaries?Philosophical Magazine Letters, 1997
- Thermal structural disorder and melting at a crystalline interfacePhysical Review B, 1992
- Structure and dynamic properties of twist boundaries in NaCl through a molecular dynamics studyPhilosophical Magazine A, 1989
- Surface meltingContemporary Physics, 1989
- MOLECULAR DYNAMICS STUDY OF THE STRUCTURE AND PROPERTIES OF TWIST BOUNDARIESLe Journal de Physique Colloques, 1988
- Test for a possible “melting” transition in grain boundaries in aluminum near the melting pointScripta Metallurgica, 1985
- High-angle grain-boundary premelting transition: A molecular-dynamics studyPhysical Review B, 1983