An improved algorithm for reaction path following

Abstract
A new algorithm is presented for obtaining points on a steepest descent path from the transition state of the reactants and products. In mass‐weighted coordinates, this path corresponds to the intrinsic reaction coordinate. Points on the reaction path are found by constrained optimizations involving all internal degrees of freedom of the molecule. The points are optimized so that the segment of the reaction path between any two adjacent points is given by an arc of a circle, and so that the gradient at each point is tangent to the path. Only the transition vector and the energy gradients are needed to construct the path. The resulting path is continuous, differentiable and piecewise quadratic. In the limit of small step size, the present algorithm is shown to take a step with the correct tangent vector and curvature vector; hence, it is a second order algorithm. The method has been tested on the following reactions: HCN→CNH, SiH2+H2→SiH4, CH4+H→CH3+H2, F+CH3F→FCH3+F, and C2H5F→C2H4+HF. Reaction paths calculated with a step size of 0.4 a.u. are almost identical to those computed with a step size of 0.1 a.u. or smaller.