Sex-Dependent Differences in Estrogen Regulation of Choline Acetyltransferase Are Altered by Neonatal Treatments*

Abstract
We investigated whether estrogenic actions of testosterone during development which mediate the suppression of feminine reproductive behavior and cyclic gonadotropin secretion also contribute to reported sex differences in the induction of choline acetyltransferase (ChAT) after estrogen priming in the diagonal band region of the preoptic area. Newborn female rats received estradiol (E2 females); newborn males received 1,4,6-androstatrien-3,17-dione (ATD), an inhibitor of aromatase (ATD males); and some of both sexes received vehicle treatment (control). In adulthood, feminine sexual behavior (lordosis) was tested after E2 plus progestrone priming. The neonatal treatments reversed the sex-specific response pattern; E2 females were defeminized and displayed minimal lordosis, as did control males, while ATD males showed maximal lordosis, as did control females. E2 was then administered, and ChAT activity was measured in the horizontal and vertical nuclei of the diagonal bands (hDB and vDB, respectively). Controls exhibited the normal sex-specific response to E2. Females showed increased ChAT activity in the hDB and unaltered activity in the vDB: males had unaltered ChAT activity in the hDB and decreased activity in the vDB. In neonatally treated males and females, ChAT activity after E2 administration was not altered from the normal sex-specific pattern in the hDB, i.e. all females showed increased hDB ChAT after E2, and no male responded. In the vDB, groups defeminized in terms of lordosis (E2 females and control males) showed higher ChAT activity in the absence of E2 priming, and E2 treatment decreased vDB ChAT in these groups. In addition, ATD males showed a unique response to E2 in the vDB, namely increased ChAT activity. Although neonatal E2 and ATD treatments did not completely reverse the sex-specific pattern of E2 priming on ChAT activity, the results obtained suggest that a net increase in diagonal band cholinergic function, as indexed by increased ChAT activity after E2 priming, may contribute to the ability of hormones to induce lordosis and/or LH surges.