Abstract
Wortmannin selectively impairs insulin-stimulated glucose transport in skeletal muscle. To search for an inhibitor specific for contraction-stimulated glucose transport, we screened a number of calmodulin and PKC inhibitors for their ability to impair contraction- and insulin-stimulated 2-deoxyglucose uptake in incubated rat soleus muscles. In concentrations that did not reduce contraction-induced force output, among calmodulin inhibitors W-7 inhibited both contraction- and insulin-stimulated glucose transport by up to 50% (P < 0.05), while Calmidazolium impaired only insulin-stimulated glucose transport (P < 0.05), and Trifluoperazine and Phenoxybenzamine did not influence glucose transport. In concentrations that did not reduce force generation, among PKC inhibitors Calphostin C specifically inhibited contraction-stimulated glucose transport (P < 0.05), whereas insulin-stimulated transport was impaired by Rottlerin and Bisindolylmaleimide I (P < 0.05), and both contraction- and insulin-stimulated glucose transport were inhibited by RO-31-8220 (P < 0.05). Calphostin C did not reduce contraction-induced increase in AMP-activated protein kinase (AMPK) activity. In conclusion, we have identified specific inhibitors of both contraction- and insulin-stimulated glucose transport. Both calmodulin and different isoenzymes of the PKC family may be involved in contraction- and insulin-stimulated glucose transport. Calphostin C does not influence glucose transport during contractions via stimulation of AMPK. Calphostin C may be used to unravel signal transduction in contraction-stimulated glucose transport.