Increase in Isoleucine Accumulation by α-Aminobutyric Acid-Resistant Mutants of Serratia marcescens

Abstract
Several α-aminobutyric acid-resistant (Abu-r) mutants of Serratia marcescens were found to be superior to the parent strain in converting d-threonine to l-isoleucine. One of them accumulated 1.5 times more l-isoleucine that the parent strain. The level of acetohydroxy acid (AHA) synthetase in this mutant increased twofold above that of the parent strain. In the parent strain, AHA synthetase was repressed and l-isoleucine accumulation was decreased by either l-valine or l-leucine, whereas in the mutant the AHA synthetase level and l-isoleucine accumulation were not affected by these amino acids. AHA synthetase of the Abu-r mutant was feedback-inhibited by l-valine to the same extent as that of the parent strain. The level of d-threonine dehydratase in both strains was only slightly affected by several amino acids tested. l-Threonine dehydratase of the parent strain and of the mutant was almost completely inhibited by l-isoleucine. These results indicate that the increase in l-isoleucine accumulation by Abu-r mutants is due to the genetic derepression of AHA synthetase.

This publication has 0 references indexed in Scilit: