A nonlinear instability burst in plane parallel flow

Abstract
An infinitesimal centre disturbance is imposed on a fully Ldveloped plane Poiseuille flow at a Reynolds numberRslightly greater than the critical valueRcfor instability. After a long time,t, the disturbance consists of a modulated wave whose amplitudeAis a slowly varying function of position and time. In an earlier paper (Stewartson & Stuart 1971) the parabolic differential equation satisfied byAfor two-dimensional disturbances was found; the theory is here extended to three dimensions. Although the coefficients of the equation are coinples, a start is made on elucidating the properties of its solutions by assuming that these coefficients are real. It is then found numerically and confirmed analytically that, for a finite value of (R-Rc)t, the amplitudeAdevelops an infinite peak at the wave centre. The possible relevance of this work to the phenomenon of transition is discussed.