Interactions of biospecific functional polymers with blood proteins and cells

Abstract
Biospecific functional polymers, i.e. synthetic or artificial polymers substituted with specific chemical functional groups carried by the macromolecular chain are designed to interact with living systems. These polymers are either insoluble or soluble, derived from polystyrene and dextran. Polymers substituted with aryl sulfonate and carboxyl groups specifically interact with antithrombin III and serine-proteases involved in the coagulation of blood. As a consequence, these polymers possess heparin-like activity and are therefore of low thrombogenicity when exposed to flowing blood. Other functional polymers have been prepared in order to interact with various components of the immune system. Soluble and insoluble functional polymers in contact with cells can affect both cell proliferation and metabolism. Some functional polymers have the ability to inhibit or to stimulate cell growth while others can alter cell function without a change in growth characteristics. The functional polymers described have possible applications as plasma expanders, non-thrombogenic catheters, non-complement activating surfaces and other applications in oncology, biotechnology and immunochemistry.