Statistical Size Effect in Quasi‐Brittle Structures: II. Nonlocal Theory

Abstract
The failure probability of structures must be calculated from the stress field that exists just before failure, rather than the initial elastic field. Accordingly, fracture‐mechanics stress solutions are utilized to obtain the failure probabilities. This leads to an amalgamated theory that combines the size effect due to fracture energy release with the effect of random variability of strength having Weibull distribution. For the singular stress field of linear elastic fracture mechanics, the failure‐probability integral diverges. Convergent solution, however, can be obtained with the nonlocal‐continuum concept. This leads to nonlocal statistical theory of size effect. According to this theory, the asymptotic size‐effect law for very small structure sizes agrees with the classical‐power law based on Weibull theory. For very large structures, the asymptotic size‐effect law coincides with that of linear elastic fracture mechanics of bodies with similar cracks, and the failure probability is dominated by the...

This publication has 13 references indexed in Scilit: