Selective NOS Inhibition Restores Myocardial Contractility in Endotoxemic Rats; However, Myocardial NO Content Does Not Correlate with Myocardial Dysfunction

Abstract
The role of nitric oxide (NO) in lipopolysaccharide (LPS)-induced myocardial dysfunction remains controversial as some investigators concluded that inhibition of NO synthesis improves left ventricular (LV) contractility, whereas others did not. We investigated the relationship between LPS-induced LV dysfunction and LV NO production. We postulated that high myocardial NO concentrations would correspond to decreased contractility and low NO concentrations would correspond to recovery. In a rat model of endotoxemia, we used the isolated papillary preparation to assess inotropic dysfunction. We measured LV NO content and hemodynamics at baseline, 4, 16, and 48 h after LPS administration. LPS caused a decrease in LV contractility at 16 h with recovery at 48 h. Myocardial NO levels were elevated at all time periods. However, at 48 h in spite of normalization of LV contractility, myocardial NO content remained elevated. Pretreatment of LPS animals with the nonselective nitric oxide synthase (NOS) inhibitor N (G)-nitro-L-arginine methyl ester (L-NAME) worsened LV contractility, decreased LV NO content, and increased mortality. However, pretreatment with the relatively selective inducible NOS (iNOS) inhibitor S-methylisothiourea sulfate (SMT) restored LV contractility. Myocardial NO content in the SMT was lower than that of the LPS only group, but higher than the L-NAME group. We conclude that SMT is beneficial to myocardial contractility in this model of endotoxemia, whereas pretreatment with L-NAME is associated with further deterioration of contractility and increased mortality. Moreover, our data indicate that high myocardial NO concentrations do not necessarily correlate with decreased contractility.