Fourier Transform Infrared Difference Study of TyrosineD Oxidation and Plastoquinone QA Reduction in Photosystem II
- 1 January 1996
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 35 (48) , 15447-15460
- https://doi.org/10.1021/bi961952d
Abstract
Two redox active tyrosines are present in the homologous polypeptides D1 and D2 of photo-system II (PS II). TyrZ (D1-161) is involved in the electron transfer reactions resulting in oxygen evolution, while TyrD (D2-160) usually forms a dark-stable radical. In Mn-depleted PS II, TyrD. can be slowly reduced by exogenous reductants. Charge separation then results in the oxidation of TyrD and TyrZ and the reduction of the primary electron acceptor QA. The semiquinone QA- can be reoxidized by oxidants like ferricyanide. In the present work, experimental conditions leading to the generation of pure QA-/QA or TyrD./TyrD FTIR difference spectra have been optimized. Therefore, single-turnover flashes or short illuminations were performed on PS II samples in the presence of exogenous reductants or oxidants. The QA- and TyrD. radicals were generated with high yield and with a lifetime of several seconds or minutes allowing averaging of FTIR difference spectra with high signal to noise ratio. Both QA- formation and contributions at the electron donor side of PS II were monitored by EPR spectroscopy. In PS II samples at pH 6 in the presence of PMS, NH2OH, and DCMU, EPR measurements show that QA- is formed with high yield upon a 1 s illumination at 10 degrees C, while no radical from the electron donor side of PS II is detected. Therefore the QA-/QA FTIR spectrum obtained in these conditions shows only vibrational changes due to QA reduction in PS II. In contrast, a similar spectrum was recently interpreted in terms of dominant contributions from Chl+/Chl signals [MacDonald, G. M., Steenhuis, J. J., & Barry, B. A. (1995) J. Biol. Chem. 270, 8420-8428], although the contribution from the electron acceptor QA was not quantified. In particular, it is shown here that the large positive signal at 1478 cm-1 is due to the QA- state and not to a Chl+ mode. This band is not downshifted upon 15N-labeling of spinach PS II membranes within the +/- 1 cm-1 accuracy of the method and is therefore tentatively assigned to the v(C[symbol: see text]O) mode of the plastosemiquinone QA-. Also unchanged upon 15N-labeling, signals at 1644 and/or 1630 cm-1 are possible candidates for the v(C = O) mode(s) of neutral QA in PS II. The TyrD./TyrD FTIR spectrum is recorded at 4 degrees C on Tris-washed PS II membranes from spinach at pH 6 in the presence of phosphate, formate, and ferricyanide. EPR experiments performed on these samples show that almost all TyrD. is formed upon a 1 s illumination at 4 degrees C and that TyrD. is then reduced within 12 min in the dark. No contributions from TyrZ. or QA- are detected 2 s after illumination. It is thus possible to optimize experimental conditions to record the FTIR difference spectrum only due to TyrD photooxidation in PS II-enriched membranes of spinach. The TyrD./TyrD FTIR spectrum is compared to a cresol./cresol FTIR difference spectrum obtained by UV irradiation at 10 K of cresol at pH 8. The spectral analogies observed between the in vivo and in vitro spectra recorded either in H2O or in D2O suggest that IR modes of TyrD contribute at 1513 and 1252 cm-1. These frequencies are characteristic of a protonated tyrosine. A positive signal is observed at 1506 cm-1 for cresol. and at 1504 cm-1 for the TyrD. state. This suggests contribution of the TyrD. side chain at 1504 cm-1. A band at 1473 cm-1 was previously assigned to the v(CO) mode of TyrD. [MacDonald, G. M., Bixby, K. A., & Barry, B. A. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 11024-11028]. In contrast, no positive signal is observed at 1473 cm-1 in the TyrD./TyrD FTIR difference spectrum presented here. The TyrD./TyrD spectrum also shows vibrational changes from peptide groups and amino acid side chains which are modified upon TyrD. formation. Proton release at the PS II protein surface upon TyrD. formation is deduced from differential signals at the v(PO) modes of phosphate.Keywords
This publication has 15 references indexed in Scilit:
- 2H ESE-ENDOR study of hydrogen bonding to the tyrosine radicals YD.bul. and YZ.bul. of photosystem II.Journal of the American Chemical Society, 1995
- Spin-Density Distribution, Conformation, and Hydrogen Bonding of the Redox-Active Tyrosine YZ in Photosystem II from Multiple-Electron Magnetic-Resonance Spectroscopies: Implications for Photosynthetic Oxygen EvolutionJournal of the American Chemical Society, 1995
- Ultraviolet Resonance Raman Spectroscopy and General Valence Force Field Analysis of Phenolate and Phenoxyl RadicalThe Journal of Physical Chemistry, 1995
- Characterization by FTIR spectroscopy of the photoreduction of the primary quinone acceptor QA in photosystem IIFEBS Letters, 1990
- Vibrational spectra and normal coordinate analysis of p-cresol and its deuterated analogsSpectrochimica Acta Part A: Molecular Spectroscopy, 1988
- Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem IIBiochemistry, 1988
- Light‐induced Fourier transform infrared (FTIR) spectroscopic investigations of primary reactions in photosystem I and photosystem IIFEBS Letters, 1986
- Studies on the proton release pattern of the donor side of system IIFEBS Letters, 1982
- Spectral and kinetic pH‐dependence of fast and slow signal II in tris‐washed chloroplastsFEBS Letters, 1982
- Spectra of phosphorus compounds—I the infra-red spectra of orthophosphatesSpectrochimica Acta, 1964