Velocity Fluctuations in Fluidized Suspensions Probed by Ultrasonic Correlation Spectroscopy

Abstract
Velocity fluctuations in a fluidized suspension of particles are investigated using two new ultrasonic correlation spectroscopies: diffusing acoustic wave spectroscopy and dynamic sound scattering. These techniques probe both the local strain rate and rms velocity of the particles, providing important information about the spatial extent of velocity correlations. Our results demonstrate the power of these techniques to probe particle dynamics of fluidized suspensions, and suggest that the velocity correlations are essentially independent of Reynolds numbers for Re(p)<1.