Abstract
The activity of arylsulfatase A and 2′3′-cyclic nucleotide 3′-phosphohydrolase was studied in the brain of trout in parallel to the structural differentiation of tissue from early larval stages into adulthood. Whereas in the optic tectum, phosphodiesterase activity could not be detected before the second month after hatching in brainstem, the enzyme had already reached 80% of adult level. In tectum it was from the fourth to the seventh month that this enzyme dramatically increased, thereby reaching about the adult level. The developmental profile of arylsulfatase A was profoundly different, since 1) considerable activity was found in tectum at early larval stages and 2) the activity showed a peak between two and six months and then dropped markedly. Morphometric analysis of the two myelinated layers of trout tectum support and extend the biochemical results leading to the conclusion that the phosphodiesterase activity reflects the prevailing degree of myelination, whereas the developmental profile of the sulfolipid-metabolizing enzyme indicates the rate of myelin accumulation.