Convective Tendency Images Derived from a Combination of Lightning and Satellite Data
Open Access
- 1 September 1988
- journal article
- Published by American Meteorological Society in Weather and Forecasting
- Vol. 3 (3) , 173-188
- https://doi.org/10.1175/1520-0434(1988)003<0173:ctidfa>2.0.co;2
Abstract
A technique is presented for generating convective tendency products by combining satellite images with observations of cloud-to-ground lightning activity. Rapid scan (5-min) infrared satellite images are used to define the areal distribution of convection. Lightning flash rate trends provide diagnostic and predictive information pertaining to the growth and decay of the thunderstorms. A single derived product from these data can show the location of the lightning activity and convective cores, the spatial distribution of convective rainfall, the remaining cloudy and statiform rain areas, and the growing and decaying storms. Examples are given to illustrate how the flash rate trend may produce a much different and more useful portrayal of storm evolution than the time rate-of-change change of cloud-top blackbody temperatures. This difference can be exacerbated in mesoscale convective weather systems where the cirrus debris can mask the life history of the embedded convective elements. Abstract A technique is presented for generating convective tendency products by combining satellite images with observations of cloud-to-ground lightning activity. Rapid scan (5-min) infrared satellite images are used to define the areal distribution of convection. Lightning flash rate trends provide diagnostic and predictive information pertaining to the growth and decay of the thunderstorms. A single derived product from these data can show the location of the lightning activity and convective cores, the spatial distribution of convective rainfall, the remaining cloudy and statiform rain areas, and the growing and decaying storms. Examples are given to illustrate how the flash rate trend may produce a much different and more useful portrayal of storm evolution than the time rate-of-change change of cloud-top blackbody temperatures. This difference can be exacerbated in mesoscale convective weather systems where the cirrus debris can mask the life history of the embedded convective elements.Keywords
This publication has 0 references indexed in Scilit: