The spectrum of γ rays in the energy range 1011 to 1013 eV at an atmospheric depth of 200 g/cm2, and pion generation in high-energy nucleon interactions

Abstract
The problem of the existence of a change of slope in the γ-ray spectrum in the atmosphere is of considerable interest in connection with conclusions about the change in the character of the nucleon interaction. Up to now this problem has not been solved experimentally. In this report the γ-ray spectrum in the 1011–1013 eV energy range has been obtained using data from X-ray films and nuclear emulsions exposed on board an airplane at a pressure of 200 g/cm2. The total exposure was 425 hoursm2. The energies of the electron–photon cascades initiated by γ rays were determined in the X-ray films by measuring the photometric densities of the black spots, and in nuclear emulsions by counting the electron tracks near the cascade axis. The integral spectrum has a power-law form with an exponent of 1.7–1.9. A change in slope in the spectrum was not found. Thus, a mechanism generating pions with energies proportional to the initial nucleon energies exists up to nucleon energies of ~1014 eV. The analysis of the accompaniment of γ rays by "families" shows that in one-third of the cases the energy of the most energetic π0 meson is at least five times that of the next π0 meson. In the remaining two-thirds of the cases the π0 mesons have comparable energies.

This publication has 3 references indexed in Scilit: