Evidence for the Hierarchical Formation of the Galactic Spheroid

Abstract
The possibility that the Galactic spheroid was assembled from numerous chemically-distinct, proto-Galactic fragments is investigated using a Monte-Carlo technique designed to simulate the chemical evolution of the Galaxy in hierarchical formation scenarios which involve no gas dissipation. By comparing the observed and simulated metallicity distributions of Galactic globular clusters and halo field stars, we estimate the level of fragmentation in the collapsing proto-Galaxy. Although the formation process is highly stochastic, the simulations often show good agreement with the observed metallicity distributions, provided the luminosity function of proto-Galactic fragments had a power-law form with exponent ~ -2. While this steep slope is strongly at odds with the presently observed luminosity function of the Local Group, it is in close agreement with the predictions of semi-analytic and numerical models of hierarchical galaxy formation. We discuss a number of possible explanations for this discrepancy. These simulations suggest that the Galactic halo and its globular cluster system were assembled via the accretion and disruption of approximately 1000 metal-poor, proto-Galactic fragments by the dominant Galactic building block: a proto-bulge whose own metal-rich globular clusters system has been preferentially eroded by dynamical processes. We argue that the same process (ie, hierarchical growth involving little gas dissipation) is responsible for the formation of both giant elliptical galaxies and the bulge-halo components of spiral galaxies. (ABRIDGED).

This publication has 0 references indexed in Scilit: