Intrinsic microtubule stability in interphase cells
Open Access
- 15 March 1994
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 124 (6) , 985-996
- https://doi.org/10.1083/jcb.124.6.985
Abstract
Interphase microtubule arrays are dynamic in intact cells under normal conditions and for this reason they are currently assumed to be composed of polymers that are intrinsically labile, with dynamics that correspond to the behavior of microtubules assembled in vitro from purified tubulin preparations. Here, we propose that this apparent lability is due to the activity of regulatory effectors that modify otherwise stable polymers in the living cell. We demonstrate that there is an intrinsic stability in the microtubule network in a variety of fibroblast and epithelial cells. In the absence of regulatory factors, fibroblast cell interphase microtubules are for the most part resistant to cold temperature exposure, to dilution-induced disassembly and to nocodazole-induced disassembly. In epithelial cells, microtubules are cold-labile, but otherwise similar in behavior to polymers observed in fibroblast cells. Factors that regulate stability of microtubules appear to include Ca2+ and the p34cdc2 protein kinase. Indeed, this kinase induced complete destabilization of microtubules when applied to lysed cells, while a variety of other protein kinases were ineffective. This suggests that p34cdc2, or a kinase of similar specificity, may phosphorylate and inactivate microtubule-associated proteins, thereby conferring lability to otherwise length-wise stabilized microtubules.Keywords
This publication has 45 references indexed in Scilit:
- Calcium-calmodulin regulated effectors of microtubule stability in bovine brainBiochemistry, 1992
- Cellular interactions and tubulin detyrosination in fibroblastic and epithelial cellsBiology of the Cell, 1991
- Microtubule dynamics in vivo: a test of mechanisms of turnover.The Journal of cell biology, 1987
- Microtubule dynamics in interphase cells.The Journal of cell biology, 1986
- Polymerization of tubulin in vivo: direct evidence for assembly onto microtubule ends and from centrosomes.The Journal of cell biology, 1985
- Tubulin dynamics in cultured mammalian cells.The Journal of cell biology, 1984
- Calmodulin-microtubule association in cultured mammalian cells.The Journal of cell biology, 1984
- Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proceedings of the National Academy of Sciences, 1979
- The role of divalent cations in the regulation of microtubule assembly. In vivo studies on microtubules of the heliozoan axopodium using the ionophore A23187.The Journal of cell biology, 1976
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970