Two-Dimensional Hydrodynamic Core-Collapse Supernova Simulations with Spectral Neutrino Transport II. Models for Different Progenitor Stars

Abstract
1D and 2D supernova simulations for stars between 11 and 25 solar masses are presented, making use of the Prometheus/Vertex neutrino-hydrodynamics code, which employs a full spectral treatment of the neutrino transport. Multi-dimensional transport aspects are treated by the ``ray-by-ray plus'' approximation described in Paper I. Our set of models includes a 2D calculation for a 15 solar mass star whose iron core is assumed to rotate rigidly with an angular frequency of 0.5 rad/s before collapse. No important differences were found depending on whether random seed perturbations for triggering convection are included already during core collapse, or whether they are imposed on a 1D collapse model shortly after bounce. Convection below the neutrinosphere sets in about 40 ms p.b. at a density above 10**12 g/cm^3 in all 2D models, and encompasses a layer of growing mass as time goes on. It leads to a more extended proto-neutron star structure with accelerated lepton number and energy loss and significantly higher muon and tau neutrino luminosities, but reduced mean energies of the radiated neutrinos, at times later than ~100 ms p.b. In case of an 11.2 solar mass star we find that low (l = 1,2) convective modes cause a probably rather weak explosion by the convectively supported neutrino-heating mechanism after ~150 ms p.b. when the 2D simulation is performed with a full 180 degree grid, whereas the same simulation with 90 degree wedge fails to explode like all other models. This sensitivity demonstrates the proximity of our 2D models to the borderline between success and failure, and stresses the need of simulations in 3D, ultimately without the axis singularity of a polar grid. (abridged)

This publication has 0 references indexed in Scilit: