Differential Temporal Evolution of Post-Training Changes in Regional Brain Glucose Metabolism Induced by Repeated Spatial Discrimination Training in Mice: Visualization of the Memory Consolidation Process?
- 1 November 1996
- journal article
- Published by Wiley in European Journal of Neuroscience
- Vol. 8 (11) , 2348-2360
- https://doi.org/10.1111/j.1460-9568.1996.tb01198.x
Abstract
The present study analyses the effects of the stage of learning on the spatial patterns and time-course of [14C]glucose uptake in BALB/c mice brain regions produced by spatial discrimination training in an eight-arm radial maze. Our particular approach was designed to follow, during the post-training period, the level of functional activity in individual brain areas which may underlie the memory consolidation process. Regional mapping of relative [14C]glucose uptake was assessed at three post-training time intervals (5 min, 1 and 3 h) after either the first (Day 1), the fourth (Day 4) or the last (Day 9) daily training session of the discrimination task and compared with sham-conditioned animals placed in the same experimental environment. The results indicated that numerous subcortical and cortical brain regions exhibit metabolic alterations following the acquisition of the spatial discrimination task. These alterations, which were specifically related to learning since they did not appear in sham-conditioned animals, were functions both of the post-training interval studied and of the degree of mastery of the task. On Day 1, a progressive, time-dependent and sequential increase in labelling was found from subcortical (5 min post-training) to cortical regions (3 h post-training). On Day 4, a peak of cortical metabolic activation was identified at 1 h post-training. In contrast, on Day 9, maximum labelling was found 5 min post-training in all subcortical and cortical regions followed by a general monotonic decline at 1 and 3 h post-training. These findings, which show widely distributed changes of metabolic activity in the brain, are consistent with the hypothesis that learning involves distributed neural networks. The sequential activation from subcortical to cortical regions seems to indicate a general mechanism whose function would ultimately be to store cortical memory representations. The acquisition-dependent shifts in the patterns of post-training metabolic labelling observed as a function of task mastery may be taken to represent a visualization of the spatio-temporal evolution of the networks of brain structures actively engaged in the memory consolidation process. In particular, the present data suggest that the duration of post-acquisition memory processing is a function of the quantity of new information which has to be dealt with by the central nervous system.Keywords
This publication has 50 references indexed in Scilit:
- Differential Temporal Evolution of Post-Training Changes in Regional Brain Glucose Metabolism Induced by Repeated Spatial Discrimination Training in Mice: Visualization of the Memory Consolidation Process?European Journal of Neuroscience, 1996
- The Hippocampal System and Declarative Memory in AnimalsJournal of Cognitive Neuroscience, 1992
- Modality-Specific Retrograde Amnesia of FearScience, 1992
- Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans.Psychological Review, 1992
- Time-dependent sequential increases in [14C]2-deoxyglucose uptake in subcortical and cortical structures during memory consolidation of an operant training in miceBehavioral and Neural Biology, 1991
- Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognitionCognition, 1989
- Different forms of post-training memory processingBehavioral and Neural Biology, 1989
- Neurobiological Aspects of Learning and MemoryAnnual Review of Psychology, 1989
- Dissociation of item and order spatial memory in rats following medial prefrontal cortex lesionsNeuropsychologia, 1987
- Measurement of regional brain glucose utilization in vivo using [2(-14)C] glucose.Stroke, 1979