On the geometry of conjugacy classes in classical groups

Abstract
We study closures of conjugacy classes in the Lie algebras of the orthogonal and symplectic groups and determine which ones are normal varieties. Furthermore we give a complete classification of the minimal singularities which arise in this context, i.e. the singularities which occur in the open classes in the boundary of a given conjugacy class. In contrast to the results for the general linear group ([KP1], [KP2]) there are classes with non normal closure; they are branched in a class of codimension two and give rise to normal minimal singularities. The methods used are (classical) invariant theory and algebraic geometry.

This publication has 19 references indexed in Scilit: