Measurement of Phase and Magnitude of the Reflection Coefficient of a Quantum Dot

Abstract
We measure the phase and magnitude of the reflection coefficient of a quantum dot (QD) in the integer quantum Hall regime. This was done by coupling the QD under study to a large QD, serving as an interferometer, and monitoring the phase of the magnetoconductance oscillations of the coupled system. As the Coulomb blockade resonances of the QD are scanned we find two distinct and qualitatively different behaviors of the phase. Our results agree for the most part with the theoretical predictions for resonant tunneling in a noninteracting system.