Extracellular matrix remodeling in canine and mouse myocardial infarcts
- 22 February 2006
- journal article
- research article
- Published by Springer Nature in Cell and tissue research
- Vol. 324 (3) , 475-488
- https://doi.org/10.1007/s00441-005-0144-6
Abstract
Extracellular matrix proteins not only provide structural support, but also modulate cellular behavior by activating signaling pathways. Healing of myocardial infarcts is associated with dynamic changes in the composition of the extracellular matrix; these changes may play an important role in regulating cellular phenotype and gene expression. We examined the time course of extracellular matrix deposition in a canine and mouse model of reperfused infarction. In both models, myocardial infarction resulted in fragmentation and destruction of the cardiac extracellular matrix, extravasation of plasma proteins, such as fibrinogen and fibronectin, and formation of a fibrin-based provisional matrix providing the scaffold for the infiltration of granulation tissue cells. Lysis of the plasma-derived provisional matrix was followed by the formation of a cell-derived network of provisional matrix composed of cellular fibronectin, laminin, and hyaluronic acid and containing matricellular proteins, such as osteopontin and osteonectin/SPARC. Finally, collagen was deposited in the infarct, and the wound matured into a collagen-based scar with low cellular content. Although the canine and mouse infarcts exhibited a similar pattern of extracellular matrix deposition, deposition of the provisional matrix was more transient in the mouse infarct and was followed by earlier formation of a mature collagen-based scar after 7–14 days of reperfusion; at the same timepoint, the canine infarct was highly cellular and evolving. In addition, mature mouse infarcts showed limited collagen deposition and significant tissue loss leading to the formation of a thin scar. In contrast, dogs exhibited extensive collagen accumulation in the infarcted area. These species-specific differences in infarct wound healing should be taken into account when interpreting experimental infarction studies and when attempting to extrapolate the findings to the human pathological process.Keywords
This publication has 34 references indexed in Scilit:
- Mast cell tryptase may modulate endothelial cell phenotype in healing myocardial infarctsThe Journal of Pathology, 2004
- Vascular Mural Cells in Healing Canine Myocardial InfarctsJournal of Histochemistry & Cytochemistry, 2004
- Evidence for an Active Inflammatory Process in the Hibernating Human MyocardiumThe American Journal of Pathology, 2002
- Disruption of the Plasminogen Gene in Mice Abolishes Wound Healing after Myocardial InfarctionThe American Journal of Pathology, 2000
- Fibronectin–Fibrin Cross-LinkingTrends in Cardiovascular Medicine, 1998
- Resident Cardiac Mast Cells Degranulate and Release Preformed TNF-α, Initiating the Cytokine Cascade in Experimental Canine Myocardial Ischemia/ReperfusionCirculation, 1998
- Increased Expression of Fibronectin Isoforms After Myocardial Infarction in RatsJournal of Molecular and Cellular Cardiology, 1997
- Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction.The Journal of cell biology, 1990
- Interleukin-1-Induced Changes in Extracellular Glycosaminoglycan Composition of Cutaneous Scar-Derived Fibroblasts in CultureCollagen and Related Research, 1988
- Effect of myocyte necrosis on strength, strain, and stiffness of isolated myocardial stripsAmerican Heart Journal, 1987