Abstract
The currently accepted mechanism for ATP–driven motion of kinesin is called the hand–over–hand model, where some chemical transition during the ATP hydrolysis cycle stretches a spring, and motion and force production result from the subsequent relaxation. It is essential in this mechanism for the moving head of kinesin to dissociate, while the other head remains firmly attached to the microtubule. Here we propose an alternative Brownian motor model where the action of ATP modulates the interaction potential between kinesin and the microtubule rather than a spring internal to the kinesin molecule alone. In this model neither head need dissociate (which predicts that under some circumstances a single–headed kinesin can display processive motion) and the transitions by which the motor moves are best described as thermally activated steps. This model is consistent with a wide range of experimental data on the force–velocity curves, the one ATP to one–step stoichiometry observed at small load, and the stochastic properties of the stepping.