Abstract
The bottom boundary layer under a progressive water wave is studied using Saffman's turbulence model. Saffman's equations are analysed asymptotically for the case Re [Gt ] 1, where Re is a Reynolds number based on a characteristic magnitude of the orbital velocity and a characteristic orbital displacement. Approximate solutions for the mass-transport velocity at the edge of the boundary layer and for the bottom stress are obtained, and Taylor's formula for the rate of energy dissipation is verified. The theoretical results are found to agree well with observations for sufficiently large Reynolds numbers.

This publication has 5 references indexed in Scilit: