From Hamiltonian chaos to Maxwell’s Demon
- 1 December 1995
- journal article
- research article
- Published by AIP Publishing in Chaos: An Interdisciplinary Journal of Nonlinear Science
- Vol. 5 (4) , 653-661
- https://doi.org/10.1063/1.166136
Abstract
The problem of the existence of Maxwell’s Demon (MD) is formulated for systems with dynamical chaos.Property of stickiness of individual trajectories, anomalous distribution of the Poincaré recurrence time, and anomalous (non‐Gaussian) transport for a typical system with Hamiltonian chaos results in a possibility to design a situation equivalent to the MD operation. A numerical example demonstrates a possibility to set without expenditure of work a thermodynamically non‐equilibrium state between two contacted domains of the phase space lasting for an arbitrarily long time. This result offers a new view of the Hamiltonian chaos and its role in the foundation of statistical mechanics.Keywords
This publication has 32 references indexed in Scilit:
- Exit times and transport for symplectic twist mapsChaos: An Interdisciplinary Journal of Nonlinear Science, 1993
- Symplectic maps, variational principles, and transportReviews of Modern Physics, 1992
- Markov-Tree Model of Intrinsic Transport in Hamiltonian SystemsPhysical Review Letters, 1985
- Dissipation in ComputationPhysical Review Letters, 1984
- Thermodynamically Reversible ComputationPhysical Review Letters, 1984
- Onset of Diffusion and Universal Scaling in Chaotic SystemsPhysical Review Letters, 1982
- Stochasticity in quantum systemsPhysics Reports, 1981
- Perceiving and Thinking: Visual Thinking . Rudolf Arnheim. University of California Press, Berkeley, 1969. xii, 348 pp., illus. $11.50.Science, 1970
- ber die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter WesenThe European Physical Journal A, 1929
- Ueber einen Satz der Dynamik und die mechanische WärmetheorieAnnalen der Physik, 1896