A role for casein kinase II phosphorylation in the regulation of IRF-1 transcriptional activity
- 1 January 1999
- book chapter
- Published by Springer Nature in Molecular and Cellular Biochemistry
- Vol. 191, 169-180
- https://doi.org/10.1007/978-1-4419-8624-5_21
Abstract
The Interferon Regulatory Factors (IRFS) play an important role in the transcriptional control of growth regulatory and immunoregulatory genes. The inducibility and availability of IRF-1 and IRF-2 are influenced by external stimuli, such as virus infection or interferon treatment. In the present study, we sought to examine the potential modulatory role of phosphorylation on IRF-1 transcriptional activity. During the purification of IRF recombinant proteins, a kinase activity copurified with IRF-1 (and IRF-2) from baculovirus infected Sf9 insect cell extracts, but not from E. coli extracts. The kinase activity was also identified in JurkatT cells, specifically interacted with IRF proteins in GST affinity chromatography, and phosphorylated IRF-1 with high specificity in vitro. Using an in gel kinase assay with recombinant IRF-1 as substrate, two molecular weight forms of the kinase (43 and 38 kDa) were identified. Biochemical criteria identified the kinase activity as the alpha catalytic subunit of casein kinase II (CKII). Furthermore, far western analysis of protein-protein interactions demonstrated that casein kinase II directly interacted with IRF-1 protein. Deletion mutation analysis of IRF-1 revealed that IRF-1 was phosphorylated at two clustered sites, one located between amino acids 138–150, the other in the C-terminal acidic activation domain between amino acids 219–231. Cotransfection studies comparing wild type and point mutated forms of IRF-1 demonstrated that mutations of the four phosphoaceptor residues in the C-terminal transactivation domain, significantly decreased transactivation by IRF-1, indicating that casein kinase II may be involved in the regulation of IRF-1 function. Strikingly, the casein kinase II clusters in IRF-1 resemble the sites identified in the C-terminal PEST domain of IκBα [29]. The present experiments, together with previously published studies with IκBα, c-Jun and other proteins, indicate a broad role for casein kinase II phosphorylation in the regulation of transcription factor activity. (Mol Cell Biochem 191: 169–180, 1999)Keywords
This publication has 71 references indexed in Scilit:
- Identification and characterization of nucleophosmin/B23/numatrin which binds the anti-oncogenic transcription factor IRF-1 and manifests oncogenic activityOncogene, 1997
- Identification and Characterization of an IκB KinaseCell, 1997
- The transcription factor interferon regulatory factor-1 is essential for natural killer cell function in vivo.The Journal of Experimental Medicine, 1996
- HIV Rev uses a conserved cellular protein export pathway for the nucleocytoplasmic transport of viral RNAsCurrent Biology, 1996
- THE NF-κB AND IκB PROTEINS: New Discoveries and InsightsAnnual Review of Immunology, 1996
- Identification of a novel cellular cofactor for the Rev/Rex class of retroviral regulatory proteinsCell, 1995
- Function and Activation of NF-kappaB in the Immune SystemAnnual Review of Immunology, 1994
- Requirement for Transcription Factor IRF-1 in NO Synthase Induction in MacrophagesScience, 1994
- Characterization of the DNA binding domain of the mouse IRF-2 proteinProtein Engineering, Design and Selection, 1993
- Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-β gene regulatory elementsCell, 1988