Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks
Open Access
- 26 September 2007
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLOS ONE
- Vol. 2 (9) , e955
- https://doi.org/10.1371/journal.pone.0000955
Abstract
Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to resistance; and strengthen the case for a role in survival of systems involved in manganese and iron homeostasis.Keywords
This publication has 178 references indexed in Scilit:
- Chance and necessity in cellular response to challengeMolecular Systems Biology, 2007
- Comparative genomics of the lactic acid bacteriaProceedings of the National Academy of Sciences, 2006
- Characterization of Adhesion Threads of Deinococcus geothermalis as Type IV PiliJournal of Bacteriology, 2006
- Reassembly of shattered chromosomes in Deinococcus radioduransNature, 2006
- Study of the Deinococcus radiodurans Nucleoid by Cryoelectron Microscopy of Vitreous Sections: Supplementary CommentsJournal of Bacteriology, 2006
- Prokaryotic toxin–antitoxin stress response lociNature Reviews Microbiology, 2005
- MUSCLE: multiple sequence alignment with high accuracy and high throughputNucleic Acids Research, 2004
- SMART: a web-based tool for the study of genetically mobile domainsNucleic Acids Research, 2000
- Sequence logos: a new way to display consensus sequencesNucleic Acids Research, 1990
- Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosisNature, 1988