Renal epithelial cell growth can occur in absence of Na+-H+ exchanger activity

Abstract
An electroneutral Na+-H+ exchange system has been described in a variety of tissues and cell types, including those of renal origin, and has been proposed to play a role in the activation of growth. We have recently characterized the presence of this ubiquitous transporter in the apical domain of confluent epithelial LLC-PK1 cells (J. Biol. Chem. 261: 3252-3258, 1986). Because most apical membrane proteins appear late in cell growth, accompanying epithelial cell polarization, we determined whether the Na+-H+ exchanger is required for the growth of LLC-PK1 cells. The studies reported here show that there is no obligatory requirement for increased H+ efflux or Na+ entry via the Na+-H+ exchanger for the initiation of cell growth in this epithelial cell line. We used 22Na+ influx, acid extrusion, and intracellular pH determinations to show that onset of cell growth, as measured by DNA content, precedes the activity of the Na+-H+ exchanger in exponentially growing cells, whereas confluent monolayers express Na+-H+ exchanger activity. When confluent cells are replated at low density, Na+-H+ exchanger activity disappears within 8 h in contrast to high-density replated cells. The fact that Na+-H+ exchanger activity is only present in confluent monolayers suggests that the development of tight junctions and polar differentiation play a role in the expression of the Na+-H+ exchanger and that this exchanger is more important to the polar epithelial cell for transepithelial transport than for the maintenance of intracellular pH.

This publication has 24 references indexed in Scilit: