Metapopulation Genetics and the Evolution of Dispersal
- 1 August 1995
- journal article
- Published by University of Chicago Press in The American Naturalist
- Vol. 146 (2) , 202-228
- https://doi.org/10.1086/285795
Abstract
A Markovian extinction model that takes into account age structure of local populations allows consideration of the effects of demography and successional dynamics on the evolution of migration. Analytical expressions for the evolutionarily stable (ES) rates of dispersal are given for cases in which newly recolonized sites attain carrying capacity within a single season. Using a low-fecundity numerical model, we find that an increase of the level of site saturation increases the dispersal rate. Ecological successions and unequal local extinction rates between newly colonized sites and established populations strongly affect the ES dispersal rate. The frequency of genetic modifiers that enhance the rate of dispersal evolves negative correlations with deme age, with high-migration genotypes predominant among colonizers while progressively declining in frequency as a deme ages. This suggests that between-deme selection (colonization) favors migrants while within-deme selection favors low dispersers, which allows the coexistence of types with different dispersal rates. Because of the interaction between the two levels of selection, the relation between the ES dispersal rate and the deme maximal lifetime is nonmonotone. We suggest that life-history traits other than dispersal might also experience antagonistic selective forces at the between- and within-deme levels.Keywords
This publication has 0 references indexed in Scilit: