Partitioning Tracers for Measuring Residual NAPL: Field-Scale Test Results

Abstract
The difficult task of locating and quantifying nonaqueous phase liquids (NAPLs) present in the vadose and saturated zones has prompted the development of innovative, nondestructive characterization techniques. The use of the interwell partitioning tracer's (IWPT) test, in which tracers that partition into the NAPL phase are displaced through the aquifer, is an attractive alternative to traditional coring and analysis. The first field test of IWPT was conducted in a hydraulically isolated test cell (3.5 by 4.3 m) to quantify the total amount of a complex NAPL (a mixture of JP-4 jet fuel and chlorinated solvents) trapped within a 1.5-m smear zone in a shallow, unconfined sand and gravel aquifer at Hill Air Force Base (AFB), Utah. Tracer breakthrough curves (BTCs) were measured in three extraction wells (EWs) following a tracer pulse (0.1 pore volume) introduction through four injection wells (IWs). The measured retardation of the partitioning tracer (2,2-dimethyl-3-pentanol) relative to the nonreactive trac...