Synchrony in an Array of Integrate-and-Fire Neurons with Dendritic Structure

Abstract
A one-dimensional array of pulse-coupled integrate-and-fire neurons, each filtering input through an idealized passive dendritic cable, is used to model the nonlinear behavior induced by axodendritic interactions in neural populations. The relative firing phase of the neurons in the array is derived in the weak-coupling regime. It is shown that for long-range excitatory coupling the phases can undergo a bifurcation from a synchronous state to a state of traveling oscillatory waves. We establish the possible role of dendritic structure in the desynchronization of cortical oscillations.