Periodicity and aperiodicity in solar magnetic activity

Abstract
Solar activity varies irregularly with an 11-year period whereas the magnetic cycle has a period of 22 years. Similar cycles of activity are seen in other slowly rotating late-type stars. The only plausible theory for their origin ascribes them to a hydromagnetic dynamo operating at, or just below, the base of the convective zone. Linear (kinematic) dynamo models yield strictly periodic solutions with dynamo waves propagating towards or away from the equator. Nonlinear (magnetohydrodynamic) dynamo models allow transitions from periodic to quasi-periodic to chaotic behaviour, as well as loss of spatial symmetry followed by the development of complex spatial structure. Results from simple models can be compared with the observed sunspot record over the past 380 years and with proxy records extending over 9000 years, which show aperiodic modulation of the 11-year cycle.