Abstract
Assuming the validity of random matrices for describing the statistics of a closed chaotic quantum system, we study analytically some statistical properties of the S-matrix characterizing scattering in its open counterpart. In the first part of the paper we attempt to expose systematically ideas underlying the so-called stochastic (Heidelberg) approach to chaotic quantum scattering. Then we concentrate on systems with broken time-reversal invariance coupled to continua via M open channels. By using the supersymmetry method we derive: (i) an explicit expression for the density of S-matrix poles (resonances) in the complex energy plane (ii) an explicit expression for the parametric correlation function of densities of eigenphases of the S-matrix. We use it to find the distribution of derivatives of these eigenphases with respect to the energy ("partial delay times" ) as well as with respect to an arbitrary external parameter.

This publication has 0 references indexed in Scilit: