Abstract
During ice-free seasons of 1975, 1977 and 1978, replicated experimental alteration of spring densities of predatory Chaoborus larvae inside 20–27 m3 enclosures in a fishless oligotrophic lake had relatively small, but significant, short-term effects upon prey species abundances. Enhancement of predator densities generally had greater numerical effects relative to controls than did complete removal of predators. With the exceptions Diaphanosoma and Bosmina under artificially elevated Chaoborus densities, numerical effects on prey species did not persist for more than a few weeks after midsummer in these 3 years. During cooler 1976, however, much larger Chaoborus effects in May and June persisted into September. Low temperatures and small initial population densities slowed population growth and tended to increase the proportion of each species' recruitment lost to Chaoborus predation. As water temperatures increased during 3 of 4 summers, rapid juvenile development and compensating increase in adult fertility generally permitted most prey species to escape regulation by these large, univoltine and semivoltine predators. With growing prey population size, declining food levels suppressed crustacean fecundity in July and August, thereby permitting predatory losses to climb again to substantial fractions of the reduced prey recruitment. Nevertheless, prey densities in predator-free and control or predator-enhanced enclosures differed little from July through September (except in 1976). Thus, summer population growth of most prey species seemed more limited by food shortages than by predators per se. Growth of individual zooplankters was affected by food availability during critical periods in July and August in all years, and Chaoborus predation seemed to influence the timing of this food limitation in at least 2 of the 4 years