Core temperature regulation of heart rate during exercise in humans

Abstract
The relationship between two abnormalities of exercise physiology in chronic heart failure patients was investigated: chronotropic incompetence and decrease in core temperature. While at rest, 13 heart failure patients had an average sinus heart rate that was significantly higher than seven normals (92 +/- 13 vs. 82 +/- 10 min-1, P less than 0.05). However, during exercise, the trend of increase in sinus heart rate as a function of work load and O2 uptake was significantly greater in normals compared with heart failure (P less than 0.05), and the absolute increase in heart rate at 50 W of cycle ergometry was larger in normals compared with heart failure (38 +/- 17 vs. 22 +/- 13 min-1, P less than 0.05). Differences in core temperature regulation were also observed. In the normals, core temperature increased from 37.13 +/- 0.33 degrees C at rest to 37.37 +/- 0.31 degrees C at 50 W of exercise (P less than 0.01). In the heart failure patients, core temperature decreased from 36.99 +/- 0.33 degrees C at rest to 36.66 +/- 0.39 degrees C at 50 W of exercise (P less than 0.01). As expected, significant differences in hemodynamic and gas exchange variables were observed between the normals and the heart failure patients both at rest and during exercise. A multiple linear regression analysis was performed of heart rate changes as the dependent variable and thermoregulatory and hemodynamic changes as the independent variables to test for their influence on heart rate.(ABSTRACT TRUNCATED AT 250 WORDS)