INTERACTIONS BETWEEN CATIONIC STARCH AND ANIONIC SURFACTANTS III RHEOLOGY AND STRUCTURE OF THE COMPLEX PHASE

Abstract
This paper reports on studies of the rheological properties of cationic starch (CS)/ surfactant systems. The degree of substitution of the CS was 0.1 - 0.8. Surfactants investigated were sodium dodecyl sulfate (SDS), potassium octanoate (KOct), sodium decanoate (NaDe)potassium dodecanoate (KDod), sodium oleate (NaOl) and sodium erucate (NaEr). Aggregation of surfactant micelles with the polymer produces a hydrophobic and pseudoplastic gel-like complex phase with low water content and high viscosity. The rheological behavior of the gels is described by the Herschel-Bulkley model. In dilute aqueous solution the CS/surfactant aggregate structure resembles a randomly coiled polymer network, in which polymer molecules are linked by micelles. The rheological data for the gel are compatible with the assumption that the surfactants form liquid crystalline structures with the polymer anchored to the surfactant aggregates, as recently suggested for analogous systems. However, this conjecture needs to be corroborated by more direct determinations of the structure.