Monte Carlo simulation of the electric double layer: dielectric boundaries and the effects of induced charge

Abstract
To model the double layer near an electrode, theories and simulations must include the different dielectric coefficients of the electrode, the commonly-postulated ‘inner’ layer, and the electrolyte. Recently, Boda et al. [D. Boda, D. Henderson, K.-Y. Chan, D.T. Wasan. Phys. Rev. E, 69, 046702, (2004)] developed a technique to include inhomogeneous dielectric coefficients in arbitrary geometries in a simulation. Here, Monte Carlo simulation results based on this method are reported for the density profiles of 1:1, 2:2 and 2:1 aqueous electrolytes. The simulations include two dielectric boundaries, one from an inner layer of low dielectric coefficient and one from an uncharged metal electrode. In addition, an extension of a Poisson–Boltzmann (PB) type theory due to Onsager and Samara [L. Onsager, N.N.T. Samara. J. chem. Phys., 2, 528, (1934)] is developed and compared with our simulation results. This approach works best for 1:1 salts at low concentrations.